

Strategic Approach

Strategic Approach to foster Energy Efficiency in Residential Buildings for different climates

Status Quo

- Buildings account for almost 30% of global CO2 emissions
- Large savings in energy use (75% or higher) are possible
- Conventional new buildings in OECD countries save 50 % energy compared to stock
- Improving buildings and appliance energy efficiency has up to 80% - 90 %saving potentials

111

Is a Strategic Approach needed?

- No worldwide consistent standard for primary thermal energy consumption
 - A general definition for low-energy buildings does not exist
 - Numerous definitions of net or nearly Zero Energy Buildings
- No definition that takes into account various levels of ambition
- Target definitions are often not clear

Hypothesis

"Highly energy efficient buildings need a strategic approach of integrated design, combining different design options in an intelligent way to achieve higher energy savings at lower investment costs"

Climate Zones

World map of Köppen-Geiger climate classification

Contact : Murray C. Peel (mpeel@unimelb.edu.au) for further information

DATA SOURCE: GHCN v2.0 station data

Temperature (N = 4,844) and Precipitation (N = 12,396)

PERIOD OF RECORD : All available

MIN LENGTH: ≥30 for each month.

RESOLUTION: 0.1 degree lat/long

Your guide to energy efficiency in buildings

Comparison of Degree Days

Performance relative to climate

Performance Values Relative to Climate

Source: GBPN 2013

U-Values relative to climate

U-Values Relative to Climate

Source: GBPN 2013

Minimum Energy Performance Standards

Case study: new buildings in Germany

The path to energy efficiency

Primary Energy per Degree Day

Comparision of annual Primary Energy consumption per Degree Day

Primary Energy per Degree Day

Comparision of annual Primary Energy consumption per Degree Day

Low Energy Building (LEB)

Compared to conventional new buildings, LEBs have:

- Energy saving potential of 40 to 60 %
- Low or no extra capital costs
- Lower lifetime costs
- Increased thermal comfort
- Enhanced indoor air quality

Ultra low Energy Building (ULEB)

Compared to conventional new buildings, ULEBs have:

- Energy saving potential of 60 to at least 80 % (and in many cases up to 90%)
- High levels of insulation
- Slightly higher or low extra capital costs
- Lower utility costs
- Lower lifetime costs
- Increased thermal comfort
- Enhanced indoor air quality

(nearly) Zero Energy and Plus Energy Building

Compared to new buildings, nZEBs and PEBs have:

- Energy saving potential of up to and over 100% respectively
- High levels of insulation
- Slightly higher extra capital costst
- Lower utility costs
- Lower lifetime costs
- Increased thermal comfort
- Better indoor air quality
- Renewable energy to cover energy consumption

The steps to energy efficiency

Simulation results of buildings

(useful energy; simulations by ECOFYS and Wuppertal Institute)

Energy Consumption Levels

	Cold	Temperate	Hot and Humid	Hot and Arid
	e.g. Qinghai	e.g. Beijing/Shanghai	e.g. Shenzhen	
	kWh/m ² _{TFA} yr	kWh/m² _{TFA} yr	kWh/m² _{TFA} yr	kWh/m ² _{TFA} yr
LEB	40 – 80	40 – 80	100 – 150	50 – 100
ULEB	20 – 40	20 – 40	50 – 100	25 – 50
nZEB	0 – 20	0 – 20	0 – 50	0 – 25
PEB	++	++	++	++

(TFA: Treated floor area)

bigEE Climate Zones

bigEE Climate Zones for China

The Strategic Approach

First worldwide consistent approach to defining Low-Energy and Ultra-Low-Energy Buildings in different climate zones

- Easy to Define
- Absolute Target Values
- Covering 4 Climate Zones (more to come)
- 4 different types of conditioning
- Numerous Types of Buildings

Your guide to energy efficiency in buildings.

Start now bigee.net

